Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization
نویسندگان
چکیده
Multilevel selection has been indicated as an essential factor for the evolution of complexity in interacting RNA-like replicator systems. There are two types of multilevel selection mechanisms: implicit and explicit. For implicit multilevel selection, spatial self-organization of replicator populations has been suggested, which leads to higher level selection among emergent mesoscopic spatial patterns (traveling waves). For explicit multilevel selection, compartmentalization of replicators by vesicles has been suggested, which leads to higher level evolutionary dynamics among explicitly imposed mesoscopic entities (protocells). Historically, these mechanisms have been given separate consideration for the interests on its own. Here, we make a direct comparison between spatial self-organization and compartmentalization in simulated RNA-like replicator systems. Firstly, we show that both mechanisms achieve the macroscopic stability of a replicator system through the evolutionary dynamics on mesoscopic entities that counteract that of microscopic entities. Secondly, we show that a striking difference exists between the two mechanisms regarding their possible influence on the long-term evolutionary dynamics, which happens under an emergent trade-off situation arising from the multilevel selection. The difference is explained in terms of the difference in the stability between self-organized mesoscopic entities and externally imposed mesoscopic entities. Thirdly, we show that a sharp transition happens in the long-term evolutionary dynamics of the compartmentalized system as a function of replicator mutation rate. Fourthly, the results imply that spatial self-organization can allow the evolution of stable folding in parasitic replicators without any specific functionality in the folding itself. Finally, the results are discussed in relation to the experimental synthesis of chemical Darwinian systems and to the multilevel selection theory of evolutionary biology in general. To conclude, novel evolutionary directions can emerge through interactions between the evolutionary dynamics on multiple levels of organization. Different multilevel selection mechanisms can produce a difference in the long-term evolutionary trend of identical microscopic entities.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSurvival of the pre-fittest: Commentary to N. Takeuchi and P. Hogeweg review article "Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life".
We review computational studies on prebiotic evolution, focusing on informatic processes in RNA-like replicator systems. In particular, we consider the following processes: the maintenance of information by replicators with and without interactions, the acquisition of information by replicators having a complex genotype-phenotype map, the generation of information by replicators having a comple...
متن کاملSocio-Economic Status, Self-efficacy and Mathematics Performance: A Multilevel Structural Euation Model
Purpose: The purpose of this study was to investigate the effect of socioeconomic status on individual and combination effects, and resilience to academic performance. Methods: For this purpose, 600 students who were selected by two stage cluster sampling methodology completed the Martin and Marsh Resiliency Questionnaire (2006) and their parents answered the International Socioeconomic Status ...
متن کامل***The Use of Metaphors in Poetry and Organization Theory: Toward De-Compartmentalization of Organizational Knowledge
Since the time of Western modernity, knowledge is compartmentalized into differentiated fields. This has however not mitigated the influence of natural science model of theorizing on social sciences. As a result, the discipline of organization theory has grown without the influence of abstract, ephemeral and metaphysical fields such as religion, history, mystic philosophy, arts and literature. ...
متن کاملSpatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کامل